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Abstract
We theoretically compare transport properties of the Fano–Kondo effect with those of the Fano
effect, focusing on the effect of a two-level state in a triple quantum dot (QD) system. We
analyze shot noise characteristics in the Fano–Kondo region at zero temperature, and discuss
the effect of strong electronic correlation in QDs. We found that the modulation of the Fano dip
is strongly affected by the on-site Coulomb interaction in QDs, and stronger Coulomb
interaction (Fano–Kondo case) induces larger noise.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum dot (QD) systems have attracted great interest for
many years because they offer the possibility of controlling
small numbers of electrons in various ways in order to
understand many-body effects in electronic systems. Quantum
correlation between localized states in QDs and free electrons
in electrodes induces interesting phenomena such as the
Fano effect and the Kondo effect. A number of important
experiments have been carried out [1–9] and many theories
have been proposed [10–14]. The Fano effect occurs as a
result of quantum interference between a discrete energy state
and a continuum state [1]. The Kondo effect is observed as
a result of many-body correlations where internal spin degrees
of freedom play an important role [2]. The Fano–Kondo effect,
which is a combination of the Fano effect and the Kondo effect,
can be observed when on-site Coulomb interaction in a QD is
strong [4]. A T-shaped QD is considered to be suitable for
facilitating discussion of the Fano–Kondo effect [4–6, 10–12].

Quantum and thermal fluctuations are the main obstacles
to the observation of quantum correlations, and are estimated
through current noise characteristics [15]. Shot noise is
the zero frequency limit of the noise power spectrum and
provides various items of information on correlation of
electrons [12, 16–18]. For uncorrelated electrons, shot noise SI

shows the Schottky result SI = 2eI , where e is an electronic
charge and I is an average current. The ratio of shot noise SI

and full Poisson noise 2eI , γ ≡ SI /(2eI ), is called the Fano
factor, and indicates important noise properties with regard to
the quantum correlation.

Wu et al [12] calculated the noise properties of a T-shaped
QD system and showed that shot noise strongly depends
on the coupling strength between a side QD and a detector
QD. As tunneling coupling between side QD and detector
QD increases, γ quickly increases up to the Poisson value
(γ = 1). López et al calculated shot noise of serially
and laterally coupled double QD systems and showed that γ

strongly depends on the coupling strength between QDs [16].
Thus, γ and shot noise reflect the coupling configuration of
a QD system and provide important information about the
electronic structure of the system.

In [14] we theoretically investigated conductance of the
triple QD system depicted in figure 1, where QDs a and b are
connected to electrodes through QD d . This triple QD system
is considered to be in the same category as the T-shaped QD.
When coupling between QD a and b is larger than that between
QD b and d (tC > td), this setup can be used as an apparatus
for detecting a two-level system (QD a and QD b) by a QD
d with electrodes. (We call QD d a detector QD.) In [14],
we showed that the Fano dip in conductance is modulated for
a slow detector (small tunneling rate of the detector) with no
on-site Coulomb interaction in QD d . This is evidence of a
bonding and antibonding state of the two-level system.

As mentioned above, noise properties strongly depend on
the coupling strength and configurations of QDs. Thus, it is
necessary to study the noise characteristics of the triple QD
system. When the number of electrons is controlled, double
QD a and b can be regarded as a charge qubit [19, 20] with
a Fano interference detector QD. In the charge qubit system,
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Figure 1. Schematic plot of a QD system. QDs a and b constitute a
two-level system that is coupled to QD d only, which is connected to
the electrodes.

noise characteristics are closely related to the decoherence
mechanism. Therefore, the fundamental properties of the triple
QD system should be clarified before investigating the more
complicated charge qubit system.

Here we investigate the noise properties of the triple QD
system from the viewpoint of electronic correlation in the
QD system. In particular, we compare zero temperature shot
noise properties of the Fano–Kondo effect with those of the
Fano effect, in order to reveal the effect of strong on-site
Coulomb interaction on the transport properties. We assume an
infinite Coulomb interaction for QD a and b and no Coulomb
interaction for QD d (Ua = Ub = ∞, Ud = 0) for the Fano–
Kondo case. For the Fano case, we consider there is no on-
site Coulomb interaction for all QDs (Ua = Ub = Ud = 0).
This case of one degree of freedom [6, 21] is realized in large
QDs. For simplicity, we assume there is a single energy level
in each QD and that the two energy levels of QD a and QD
b coincide and correspond to gate voltages applied to those
QDs. We use the slave-boson mean-field theory (SBMFT)
based on the Keldysh formalism in the nonequilibrium Green’s
function method. The formulation of the SBMFT is useful and
is a good starting point for studying the transport properties
of a strongly correlated QD system, although this method is
usable in a region with a lower temperature (T ) than the Kondo
temperature TK [22, 16].

2. Formulation

The Hamiltonian is constructed from electrode parts, QD parts,
tunneling parts between QDs, and those between an electrode
and a QD:

H =
∑

α=L ,R

∑

kα ,s

Ekα
c†

kα sckαs +
∑

α1=a,b,d

∑

s

Eα1 f †
α1s fα1s

+ tC
N

∑

s

( f †
as fbs + f †

bs fas) + td
N

∑

s

( f †
ds fbs + f †

bs fds)

+
∑

α=L ,R

Vα√
N

∑

kα ,s

(c†
kαs fds + f †

ds ckαs), (1)

where Ekα
is the energy level for source (α = L) and drain

(α = R) electrodes. Ea, Eb and Ed are energy levels for
the three QDs, respectively. tC , td and Vα are the tunneling
coupling strength between QD a and QD b, that between QD b
and QD d , and that between QD d and electrodes, respectively.
ckαs and fα1s are annihilation operators of the electrodes, and
of the three QDs (α1 = a, b, d), respectively. s is the spin

degree of freedom with spin degeneracy N ; here we apply
N = 2. In the slave-boson technique, a boson operator
bα1(α1 = a, b) is introduced so that the fermion operator
fα1s is replaced by fα1s → b†

α1
fα1s and f †

α1s → f †
α1sbα1 . A

constraint
∑

s f †
α1s fα1s + b†

α1
bα1 = 1(α1 = a, b) is introduced

in order to prohibit the double occupancy of electrons in QD a
and QD b due to the infinite on-site Coulomb interaction. The
mean-field Hamiltonian for the Fano–Kondo case is described
by introducing a Lagrange multiplier λα1 as

H MF =
∑

α=L ,R

∑

kα ,s

Ekα
c†

kα sckαs +
∑

α1=a,b,d

∑

s

Eα1 f †
α1s fα1s

+ tC
N

∑

s

( f †
asbab†

b fbs + f †
bsbbb†

a fas)

+ td
N

∑

s

( f †
dsb†

b fbs + f †
bsbb fds)

+
∑

α=L ,R

Vα√
N

∑

kα ,s

(c†
kαs fds + f †

ds ckαs),

+
∑

α1=a,b

λα1

(
∑

s

f †
α1s fα1s + b†

α1
bα1 − 1

)
. (2)

Here, we take zα1 ≡ b†
α1

bα1/2 and Ẽα1 ≡ Eα1 + λα1 as mean-
field parameters for QD a and QD b. The Hamiltonian for the
Fano case is similar to H MF except that λa = λb = 0 and
ba = bb = 1 in equation (2).

In the Fano–Kondo effect, four self-consistent equations
to determine mean-field parameters λα1 and bα1 are derived
by minimizing the free energy ∂〈H MF〉/∂λα1 = 0 and
∂〈H MF〉/∂bα1 = 0 as

t̃C
∑

s

〈 f †
bs fas〉 + λa|ba|2 = 0, (3)

t̃C
∑

s

〈 f †
as fbs〉 + t̃d

∑

s

〈 f †
ds fbs〉 + λb|bb|2 = 0, (4)

∑

s

〈 f †
α1s fα1s〉 + |bα1 |2 = 1, (α1 = a, b). (5)

Current and noise formula are expressed by nonequi-
librium Green’s functions in the Keldysh formalism. In a
nonequilibrium system, the state of the system at t = +∞ is
unknown and all quantities should be related to the state of the
system at t = −∞. This means that Green’s functions depend
not only on the times at which the operators act but also on
the corresponding branch of the contour. Thus, we need types
of Green’s functions, such as G> and G<, other than conven-
tional time-ordered Green’s function, and the relations between
Green’s functions are described as a matrix in the Keldysh for-
malism.

Equations (3)–(5) can be described by lesser Green’s
functions. For example, from definitions G<

ab(t, t ′) ≡
i〈 f †

bs(t
′) fas(t)〉 and G<

bd(t, t ′) ≡ i〈 f †
ds(t

′) fbs(t)〉, we have

〈 f †
bs fas〉 = −i

∫ ∞

−∞
G<

ab(ω) dω/(2π), (6)

〈 f †
ds fbs〉 = −i

∫ ∞

−∞
G<

bd(ω) dω/(2π). (7)
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These lesser Green’s functions can be derived from the retarded
and advanced Green’s functions by G< = (1 + Gr�r )G<

0 (1 +
Ga�a)+ Gr�<Ga , where �<, �r and �a are the self-energy
parts. The relations between the nonequilibrium Green’s
functions of different parts of the systems are obtained by
applying analytic continuation rules to the equations of motion,
which are derived from the above mean-field Hamiltonian [16].
For example, the retarded and advanced Green’s functions
for QDs are given as Gr

aa(ω) = [(ω − Ẽb)Br − |t̃d |2]/B00,
Gr

bb(ω) = [(ω − Ẽa)Br ]/B00 and Gr
dd(ω) = Dab/B00 etc,

where Dab ≡ (ω − Ẽa)(ω − Ẽb) − t̃2
C , Br ≡ ω − Ẽd + i	

and B00 ≡ Dab Br − (ω − Ẽa)|t̃d |2 with t̃C = tC bab†
b/N and

t̃d = tdb†
b/N . Here, 	α ≡ 2πρα(μα)|Vα|2 is the tunneling

rate between electrode α and QD d with a density of states
(DOS) of ρα(μα) for each electrode at Fermi energy μα. 	 ≡
(	L + 	R)/2, and we assume 	L = 	R . The lesser Green’s
function G<

ba(ω) is given by

G<
ba(ω) = it̃∗

C |t̃d |2(ω − Ẽa)

B00
[	L fL (ω) + 	R fR(ω)]. (8)

Here, fα(ω) is the Fermi distribution function expressed by
fα(ω) ≡ [exp((ω − μα)/T ) + 1]−1 where we set the
symmetrical bias condition: μL = EF − eV/2 and μR =
EF + eV/2.

Source current IL is expressed as

IL = (2e/h)

∫ ∞

−∞
dωT (ω)( fL(ω) − fR(ω)), (9)

where the transmission probability T (ω) is given as

T (ω) = 	L	R|Dab|2
[Dab(ω − Ẽd) − (ω − Ẽa)zat2

d /2]2 + 	2 D2
ab/4

(10)
(the denominator is B00). Note that in the present case
we can check that IL and IR are symmetric and satisfy
current conservation. Conductance is given as G =
− 2e

h

∫
dωT (ω)

∂ fL (ω)

∂ω
. The transmission probability is related

to a DOS of the detector QD ρd(ω) = −ImGr
dd(ω)/π such

as T (ω) = 2	L 	R
	L +	R

πρd(ω), which means that we can discuss
characteristics of a DOS similar to a transmission probability.

Current noise is calculated as a correlation function of
current fluctuation as S(t, t ′) = (1/2)[〈{ ÎL(t), ÎL (t ′)}〉 −
2〈 ÎL (t)〉2], where ÎL (t) = (ie/h̄)

∑
(VL/

√
N )[c†

kL s(t) fds(t)−
H.c.] is a current operator. The noise formula at T = 0 is
derived similarly to that in [16], and we have

S(V ) = 4e2

h

∫ eV/2

−eV/2
dωT (ω)(1 − T (ω)). (11)

The Fano factor γ at zero bias V = 0 is obtained by γ =
1 − T (EF), which indicates that shot noise is in the sub-
Poissonian region (γ � 1). Similar to [14], we classify our
triple QD system by the magnitude of tC/td and 	/td . The
ratio tC/td compares the internal coupling strength in a two-
level system with that between the two-level system and the
detector, and we regard the case where tC/td = 5 as a strongly
coupled two-level system and the case where tC/td = 1 as a

Figure 2. Conductance G as a function of an energy level of the
two-level system Ea(=Eb) with a strong coupling (tC/td = 5) for the
Fano case (Ua = Ub = 0): (a) T/td = 0.02 and (b) T/td = 0.2 for a
fast detector (	/td = 2). (c) T/td = 0.02 and (d) T/td = 0.2 for a
slow detector (	/td = 0.4). EF = 0.

weakly coupled two-level system. If 	/td is large, the electron
that flows through QD d is so fast that the oscillation of an
electron in the coupled QDs a and b cannot be detected. If
	/td is small, the electron that flows through QD d makes
it possible to observe evidence of bonding and antibonding
states. We call a detector with large 	/td = 2 a fast detector,
and one with smaller 	/td = 0.4 a slow detector. We assume
that D = 20td , |Ed | < 0.4td , 	 > 0.4td and EF = 0
(D is a bandwidth). Then, we have the Kondo temperature
TK ∼ De−π |Ẽd−EF|/	 ∼ 1.6td .

3. Numerical calculations

Here, we show numerical results of our triple QD system in
terms of the Fano–Kondo effect and the Fano effect for a strong
coupling case (tC/td = 5). We have obtained similar results for
a weak coupling case (tC/td = 1), although the results for the
weak coupling case show slightly complicated characteristics
because the energy levels of weakly coupled triple QDs are
closer to one another than those of strongly coupled QDs.

Before showing the results of the noise calculations, we
show numerical results of the conductance and the current for
the Fano case in figures 2 and 3. Figure 2 shows conductance
of the Fano case as a function of Ea. A clear double-peak
structure can be seen in every figure. This is in marked contrast
to our previous results for the Fano–Kondo effects [14] where
only a slow detector can detect modulation of a single Fano
dip (	 = 0.4td) at low temperature (T = 0.02td). The
present clear double-peak structure is a direct result of the
form of transmission probability T (ω), in particular, Dab in
the numerator of equation (10). These results show that the
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Figure 3. I–V characteristics for a strong coupling (tC/td = 5) at
T = 0: (a) Fast detector (	/td = 2) and (b) slow detector
(	/td = 0.4). Ea = Eb = 0 = EF.

Kondo effect, a spin exchange effect, greatly changes the Fano
effect. Dip structure is the largest for a slow detector at low
temperature (figure 2 (c)). The asymmetry of the dip structure
for Ed �= 0 can also be understood from equation (10).
Because G ∝ T (ω ∼ 0) at low temperature and we set
Ea = Eb, we have Dab(ω = 0) = Ẽ2

a − t̃2
C . Thus, for

Ed = 0, both the numerator and the denominator of T (ω) are
symmetric for Ea . However, when Ed �= 0, the denominator
deviates from symmetric form because of the Dab(ω − Ed)

in the expression. Since the resonant case (Ed = Ea = Eb)
strongly reflects electronic correlations among QDs, a clearer
difference between the Fano effect and the Fano–Kondo effect
is evident, as shown in the following.

Figure 3 shows current–voltage (I –V ) characteristics at
T = 0. All currents look similar for a fast detector (a) in the
case of both the Fano effect and the Fano–Kondo effect. This
indicates that a fast detector is less sensitive to quantum states
of a QD system than a slow detector. The current of the Fano–
Kondo effect is always less than that of the Fano effect. This
indicates that the current path from the source to the drain via
the two-level system is suppressed by the Kondo effect because
of the on-site Coulomb interaction.

Figure 4 shows shot noise characteristics as a function of
bias voltage across the detector QD. Ed dependence is simpler
for a fast detector (a). This is because a fast detector is more
sensitive to the energy level of a detector QD d than to energy
levels in two-level system. Shot noise of a slow detector
reflects internal states of a two-level system.

Although the magnitude of current for a fast detector is
larger than that for a slow detector (figure 3), the magnitude
of shot noise for a fast detector is of the same order as that
of a slow detector (figure 4). Thus, γ for a slow detector
is relatively larger than that for a fast detector, as shown in
figure 5. This is because of the stronger coupling of flowing
electrons with two-level states in a slow detector. Strong
nonlinearity around V = 0 is considered to reflect the resonant
state of Ed = 0 (= Ea = Eb = μL = μR) and the dip of
Ed/td = −0.4 in figure 5 (b) comes from the shift of resonant
energy level. In both a fast detector and a slow detector, γ

for the Fano–Kondo case is larger than that for the Fano case.
This indicates that stronger electronic correlation induces more
noise.

Figure 4. Shot noise as a function of bias voltage for a strong
coupling (tC/td = 5). (a) Fast detector (	/td = 2). (b) Slow detector
(	/td = 0.4). T = 0. Ea = Eb = 0 = EF.

Figure 5. Fano factor γ as a function of bias voltage.
Ea = Eb = 0 = EF for a strong coupling (tC/td = 5). (a) Fast
detector (	/td = 2) and (b) slow detector (	/td = 0.4).

4. Discussion

We have shown that the slower detector, which is found to
be preferable for detecting the electronic structure of a two-
level state, induces more noise than a fast detector. This
means that acquisition of detailed information about a two-
level state induces more noise or a larger Fano factor. We
also found that the Fano factor for strong on-site Coulomb
interaction (the Fano–Kondo case) is larger than that for no
Coulomb interaction (the Fano case). Thus, we can infer the
relative strength of on-site Coulomb interactions in the two-
level state by measuring the noise properties. As discussed
in [14], when the number of electrons in the two-level state is
controlled, a double QD a and b can be regarded as a charge
qubit [19, 20]. This charge qubit condition would be realizable,
for example, by forming smaller and closely coupled QDs,
such that two electrons are not permitted into the QDs because
of their mutually repulsive Coulomb interaction. Thus, if we
consider the effect of other causes of noise such as phonons,
more elaborate control of the measurement for a charge qubit
system will be necessary.

Kobayashi et al [5] discussed the rapid smearing out of the
dip structure with increasing temperature owing to the thermal
broadening of the resonant level. Although we assume one
energy level in each QD at T = 0, if we take more energy
levels in each QD into consideration it is possible that the

4
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Fano dip would smear out rapidly with increasing temperature
because of the mixing of those energy levels, in addition to the
thermal broadening.

We have used the SBMFT to describe quantum correlation
between electrons in discrete energy levels and free electrons
in electrodes. The essential part of the Kondo problem lies
in the interaction between a discrete energy system (QD) that
has finite degrees of freedom and a continuum energy system
(electrode) that has infinite degrees of freedom. In general, the
latter is more difficult to handle than the former. Read and
Newns [23] confirmed the validity of the SBMFT for a single
QD case. In our model, one extra QD that has finite degrees of
freedom is simply added to the standard T-shaped QD system.
This means that we add two additional spin degrees of freedom
to the case of [23]. Thus, we think that the mean-field theory
qualitatively remains valid for the triple QD system, although
we should investigate the exact range of this validity in the
future.

5. Conclusion

Focusing on the two-level state in a triple QD system, we
intensively studied the transport properties through the Fano
effect and the Fano–Kondo effect in the range of the SBMFT.
The peak structure in the DOS of the Fano effect is greatly
modulated from that of the Fano–Kondo effect. We analyzed
the shot noise properties, and showed that, depending on the
coupling strength among the triple QDs, modulation of noise
and the Fano factor for a slower detector are larger than those
for a faster detector. We also found that stronger Coulomb
interaction (Fano–Kondo case) induces larger noise. These
indicate that although a slower detector is better than a faster
detector for reading out the quantum state of the two-level
system, it is necessary to find optimal couplings of QDs and
optimal operation parameters by paying attention to the trade-
off that detailed reading out of a two-level state is inclined to
enhance the noise of the system.
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